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Abstract. We consider the problem of state selection for a stochastic system, initially in
an unstable stationary state, when multiple metastable states compete for occupation. Using
path-integral techniques we derive remarkably simple and accurate formulae for state-selection
probabilities. The method is sufficiently general that it is applicable to a wide variety of problems.

The investigation of the decay from a metastable state has been the subject of humerous
studies over very many years [1-3]. However, the analogous problem of the decay from an
unstable state has received comparatively little attention [3—6], and what studies there have
been have focused on the kinetic properties of one-dimensional and quasi-one-dimensional
systems$. However, these studies cannot address one of the fundamental, open questions
in non-equilibrium statistical mechanics: state selection from an unstable state in systems
with multiple, isolated minima. Here we present a systematic, intuitive, and analytically
tractable method which gives results in excellent agreement with Monte Carlo simulations.

When driven far from equilibrium many systems encounter instabilities. At such points,
noise plays a crucial role. In addition, in complex systems there are multiple modes that
interact and can compete. Perhaps the most familiar example is found in RaylérgreB
convection. Consideration of the interaction between two competing modes leads to the
following equations for their amplitudes andy [7]:

X =ax —yxy> —8x3+n.(t)
v =By —yyx? —ey* +n,(1) 1

wherea andg are the (positive) growth rates for the two modeandy, y is the (positive)
coupling coefficient, and ande are positive stabilizing coefficients. The variablgsands,

are Gaussian random variables with mean zero and varign@en;(¢')) = 2Dé;;6(t —t'),

wherei and j are eitherx or y, and D is the noise strength. As we are considering the
decay from the unstable stationary point= 0, y = 0, the noise plays an essential role.
There are four main elements that are present in equation (1): (i) an unstable stationary point
with exponential growth of the modes in the neighbourhood of this point; (ii) interaction
between the modes; (iii) isolated metastable states; and (iv) noise. These features are also
found in many other systems [8-10].

1 By guasi-one-dimensional we mean the potential is spherically symmetric and the system is therefore effectively
one-dimensional.
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In this letter we address the question: given a system described by equations such as
(1), with the initial condition being the unstable stationary point, what is the probability
that the system finds itself in a given metastable configuration? The system will relax
to thermal equilibrium over a time scale that is of the order of(&D), whereE is a
characteristic energy barrier separating the metastable states. Howdvex if, this time
can be enormous. Our focus is on understanding the occupation over shorter time scales.

Our approach is based on the path-integral representation for the conditional probability
density P(r, T|0, 0) that the system resides in stateat time T given that it started at the
unstable stationary point at the origin. For purposes of illustration, we take the concrete,
physically important example presented in equation (1). The path-integral expressi®n for
is given by [11]

P = / DrJ[r] e SUVP 2
where
T
S[r] = 211/ de[7 + VV ()]? ()
0
and
Jr] = exp(; /OT dtv2V(r)>. 4)

Here S is the action,/ is the Jacobian, an¥l is the potential for this problem and is given
by
@ 5 B oV 22,08 4 €4
V(r) = > 5 +2xy +4x +4y. (5)

To evaluate the path integral for weak noise, a natural approximation scheme is the
method of steepest descent. In this approach, the path integral is dominated by the paths of
least action; a necessary condition is that these paths make the action stationary. The leading
approximation is to simply evaluate the action along these paths. However, in our case it is
necessary to go beyond this order and include both (Gaussian) fluctuations about the paths
of least action, as well as the Jacobian evaluated along the appropriate path. In other words,
once the stationary paths have been determined, we need to calculate three quantities: (i) the
action, (ii) the Jacobian, and (iii) the fluctuation determinant, which characterizes the effect
of fluctuations about the relevant path.

Having outlined a general prescription for calculating the conditional probability density,
we now focus on the specific example introduced above. Figure 1(a) is a three-dimensional
plot of V (r) for a certain choice of parameters. In figure 1(b) we plot the locus of points for
which VV = 0. This is a useful way to visualize state space; the points where the ellipses
intersect each other are the saddle pointd/ofdenoted by crosses), the points where the
ellipses intersect the and y axes are the local minima (denoted by open circles), and the
origin is the unstable stationary point (denoted by a closed circle). The question of interest
here can now be phrased in the following way: given an ensemble of systems, each of
which starts at the unstable stationary point, what fraction of the ensemble flows into an
x-valley or y-valley (which lead to ther- and y-wells, respectively)? For simplicity, we
suppose thaé and e are sufficiently small that the local minima are so distant from the
region where state selection occurs that they have no influence. Operationally, this consists
of settings ande to zero, so that now

B o ¥V 22

o
V(x,y):—ixz—iy +§x ye. (6)
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Figure 1. (@) V(x,y) witha =8 =2,y =4,§ =€ = 1/5. (b) Contours of zero force.

Given that the minima are now irrelevant, it is natural to consider the conditional probability
that if the system starts at= 0 it ends up in anx-valley denoted by X, 0) or ay-valley
denoted by (0Y). To do this we follow the procedure outlined above, viz we first find
the path, or paths, of least action that connect the unstable point to a point in one of these
valleys. (Hereafter, we shall confine our attention to calculating the probability that if the
system starts at = (0,0) at+ = 0 that it end atr, = (X,0) atr = T. The analogous
problem where the endpoint 15, = (0, Y) can be handled in exactly the same way.) The
most obvious stationary path is = (x., 0), where

sinh(at)
c = X,i. 7
xe(0) sinh(aT) (")
The actionS, = S[x,.] for this solution is given by
X2
S, = aT[coth(aT) —1] @8)

In the limit that7 — oo, S — 0, so that, at least in this limit, this solution is a path of least
action, not simply a stationary path. We are unable to prove that this is the only stationary
path that connects (0,0) withX( 0). However, we will show that we can make significant
progress by considering only this path. In fact, this simplification will enable us to derive
a remarkably simple formula foP (r,, T'|0, 0).
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The second factor that we must evaluate is the Jacobian evaluated along the.path
Using equations (4) and (7) we find that

T T
Jlrd = JJy = {exp[ - %/O dta“{ exp[;/o dt[—B + yxf(t)]“. 9)

It is straightforward to calculate both andJ,, with the results that

Jy = exp(—iaT) (20)

and
BT yXZSinh(ZaT)—ZozT>
Jy = T ) 11
) eXp< 2 T e 2sintf(aT) D

The third quantity that we must calculate is the effect of fluctuations aboufo do
this, we expand[r] about the pathr., keeping terms of second order. Taking= r. +§r,
we have that

S[r] = S[r.] + %/ dtsrL[r.]ér

whereL, = L[r.] is a 2x 2 matrix-differential operator that is given by

Lir] = [Lox : ] (12)
where

L,=—-0*+0a? (13)
and

Ly = =37+ (=B + yx2)? — 2ax)(yx.). (14)

The path integral in equation (2) over now becomes an integral ovér. Using the
second-order expansion 6fr], the Gaussian integrals ovés can be completed. These
integrals contribute a factor <:;j'|_o|et7Lc|_l to the expression for the conditional probability.
As L is block-diagonal, we have that det = detL, detL,. Combining this with the fact
that J. = J. J,, the steepest-descent approximation for the conditional probability can be
written as

P(r:,T10,0) ~ Q1P (15)
where
Py = e sop (16)
JidetL,|
and
-1_ Jy (17)

JIdetL, |

The expressions fo§., J, and J, are given in equations (8), (10) and (11), respectively.
The conditional probability,P, is the product of two factors:Py, which is described in
the following paragraph, an@~1. This form is particularly appealing because, as we shall
see below, it i2 that accounts for the presence of the competingode, whereas, is
independent of botjg andy and is therefore insensitive to the presence.ofo determine

Py and 2 we need to calculate dét and det,.
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The calculation of det, is straightforward, with the result that def o sinh(aT).
Combining this result with equation (8) f&&. and equation (10) fov,, Py can be written
as

2
Po(X, T) = y/afcoth(aT) — 1] exp[—ozf)[coth(aT) — 1]} . (18)

Py is the conditional probability density that a one-dimensional system under the influence
of the potential-«x?/2 and Gaussian white noise is locatedcat X atr = T given that
it started att = 0 atz = 0. As a function ofT, P, is peaked at a valug* that is given
by cothaT*) = 1+ 2D/(aX?), i.e.
T* = (20) "t In(1+ aX?/D). (19)
The calculation of deL, is not as straightforward; it can be expressed as [12]
ho(T)Yh1(0) — he(T)ho(0
detL, = .2( )h1(0) .1( Yh2(0)
h2(0)h1(0) — h1(0)h2(0)
where h; and hy are two linearly independent solutions of the homogeneous equation

L,h = 0. The denominator of equation (20) is the Wronskian of the two solutions. To
evaluate equation (20), consider the quantity

(20)

t
hi(X, 1) = eXP(ﬁt -y / dt’xc-(t’)2> . (21)
0
Taking the second derivative a@f with respect ta we find that
hy=[(B = yx2)? = 26 (yx)]ha. (22)

Comparing equation (22) witlh,4 = 0 from equation (14), we see thatif = ax. then

hy is one of the desired solutions. Now = ax.coth(wt), so as long as cothr) is
close to 1,h; is a good solution. Recall, however, that for < T*, Py is essentially
zero (cf equation (18)). Thus, it is only values 6f > T* that are relevant. However,
coth(aT*) = 1+O(D) so indeed we expect that as longlas« 1, k, is a good approximate
solution to the homogenous equatians = 0. The second linearly independent solution,
h, can be expressed in terms jof as

ha(t) = ha(t) / dr'n (1),
0

With this choice ofi,, we have thak»(0) = 0. In addition,z1(0) = 1 so that the Wronskian
is unity and

T
detL, = hy(T) = hl(T)/ drh?(t). (23)
0

Combining this equation with the fact thd = h[l/z(T) (cf equations (11) and (21)), we

find that
T
QX,T)=hi(X, T) // drh7%(X, 1). (24)
0

With this expression fof2, together with equation (21) fdr,(+) and equation (18) foPy,
we have succeeded in deriving a formula #¢r,., T'|0, 0) that accounts for the Jacobian
prefactor as well as the Gaussian fluctuations about the stationary patb calculate the
analogous formula fo® (r,, 7|0, 0) (wherer, = (0, Y)), we simply switche and g and
replaceX with Y.
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At this stage we are in a position to calculate, using our expressior ey, 7|0, 0),
the probability that the system flows into a given well. Currently, we have a simple analytic
expression forPy, but to calculate2 we need to integratb;2 over time. This integration
presents no difficulty in principle. However, by making two approximations we are able to
obtain a simple analytic formula fae. Specifically, we approximate the exponential factor

2 g 5
yx< sinh(2ar) yx©sinh(2aT) 4+ 2a(t — T) cosh(2aT)
e [a 2 SinF(aT)Z} o eXp[ 2 sinh(@T)? ]

and omit the contribution from the lower limitT'( = 0) in equation (23). This second
approximation is due to the fact that, as explained in the discussion following equation (22),
hi1(¢) is only a good solution fo&et > 1. We now obtain the following approximate formula

for Q(X, T):

as

yX?sinh2aT) — 2aT
o 2sintf(aT)

We have compared equation (25) with numerical calculations of (24), and we find that
for the relevant range of parameters the results are essentially indistinguishable. Thus,
equation (18) forP, and (25) for2 together provide an analytic formula for the conditional
probability given in (15).

We now turn to the computation of the relative probability that the system flows into an
x- or y-valley. The strategy is to calculate the total probability flux throughaithalleys
and they-valleys and compare them. The probability current, which we denoté(y 7),
is given by 7 = —PVV — DV P, so that the total flux*, through anx-valley atX is

2802 = exp[— } {exp(28T) — 1}. (25)

Fo(X) = /Oo dtfoO dyJ,(r,t)
0 —00

and the total flux, through ay-valley atY is

Fo(¥) = / d / Ay, (r. 1)
0 —00

where J, and J, are thex- and y-components of7, respectively. Denoting by, the
relative probability of flowing into arx-valley we then have that

F(X)
Fo(X)+ Fy(Y)

The calculation of the fluxes requires a knowledgejofind hence ofP (», T|0, 0). In
particular, we require this function for an arbitrary point in th@alley and not just on the
x-axis, i.e. we requireP (r), not simply P(r,). The method we have presented may be
extended to obtain the full functional dependencerdi3], but the results given above do
not give P any explicit dependence on thevariable across the-valley or thex variable
across they-valley. We will therefore limit ourselves here to showing that, by estimating
the flux by sampling it on the axis, we can obtain excellent agreement with Monte Carlo
simulations and therefore confirm the essential correctness of our approach. A feature of this
procedure is the necessity of fittidg or Y. We expect that this will no longer be required
when the flux is calculated, since this should enabl€X) and 7, (Y) to be calculated for
large X andY where we would expect them to be insensitive to their actual values. The
only restriction that we will impose o andY is that they are not too small, for then state
selection will not have occurred when these points are reached. We estimate the minimum
value of X to be of the order oK iy, the point at which the force in the-direction changes

N.(X,Y) = (26)
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Figure 2. Probability of flowing into anxc-valley as a function of. Simulation results are for
B =1 and the continuous curves are our theoretical results.

sign. ForV given in equation (5) we have thai,, = +/B8/y. Likewise, we have that the
minimum value ofy is given by Ymin = a/y.

The Monte Carlo simulations are performed on the Langevin equation Wih y)
given in equation (6). In figure 2 the results are shown for a range of valuesaoid
particular choices of8 and of yD (y and D always appear in this combination, since
the effect of the interaction is to renormalize the noise). The theory we have outlined
here is seen to be in excellent agreement with the simulations.y Poe= 0.1 we have
taken X = Xpyin andY = Ymin and fory D = 0.001 we have takerX = 1.83Xn, and
Y = 1.83Ymin. Comparison for other values of the parameters, a determination of the region
of validity of our approximation in parameter space and further improvements of the method
will also be discussed elsewhere [13].

In this letter we have presented a systematic method for determining state selection
from an unstable stationary state, when multiple metastable states compete for occupation.
Previous methods have not addressed this question directly. Our treatment has the added
advantage of yielding closed form, analytic expressions for the conditional probability
distribution. Finally, we emphasize that, although we have focused on a specific potential
system with two degrees of freedom for illustrative purposes, our theory is neither restricted
to potential problems nor to systems with only two degrees of freedom.

We thank Ken Elder for useful discussions, and the Universities of Chicago and Manchester
for hospitality. This work was supported in part by EPSRC grant GR/K79307 (AJM) and
by the NSF (DMR-9415604) (MBT).
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