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Abstract. We consider the problem of state selection for a stochastic system, initially in
an unstable stationary state, when multiple metastable states compete for occupation. Using
path-integral techniques we derive remarkably simple and accurate formulae for state-selection
probabilities. The method is sufficiently general that it is applicable to a wide variety of problems.

The investigation of the decay from a metastable state has been the subject of numerous
studies over very many years [1–3]. However, the analogous problem of the decay from an
unstable state has received comparatively little attention [3–6], and what studies there have
been have focused on the kinetic properties of one-dimensional and quasi-one-dimensional
systems†. However, these studies cannot address one of the fundamental, open questions
in non-equilibrium statistical mechanics: state selection from an unstable state in systems
with multiple, isolated minima. Here we present a systematic, intuitive, and analytically
tractable method which gives results in excellent agreement with Monte Carlo simulations.

When driven far from equilibrium many systems encounter instabilities. At such points,
noise plays a crucial role. In addition, in complex systems there are multiple modes that
interact and can compete. Perhaps the most familiar example is found in Rayleigh–Bénard
convection. Consideration of the interaction between two competing modes leads to the
following equations for their amplitudesx andy [7]:

ẋ = αx − γ xy2− δx3+ ηx(t)
ẏ = βy − γyx2− εy3+ ηy(t) (1)

whereα andβ are the (positive) growth rates for the two modesx andy, γ is the (positive)
coupling coefficient, andδ andε are positive stabilizing coefficients. The variablesηx andηy
are Gaussian random variables with mean zero and variance〈ηi(t)ηj (t ′)〉 = 2Dδij δ(t − t ′),
where i and j are eitherx or y, andD is the noise strength. As we are considering the
decay from the unstable stationary pointx = 0, y = 0, the noise plays an essential role.
There are four main elements that are present in equation (1): (i) an unstable stationary point
with exponential growth of the modes in the neighbourhood of this point; (ii) interaction
between the modes; (iii) isolated metastable states; and (iv) noise. These features are also
found in many other systems [8–10].

† By quasi-one-dimensional we mean the potential is spherically symmetric and the system is therefore effectively
one-dimensional.
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In this letter we address the question: given a system described by equations such as
(1), with the initial condition being the unstable stationary point, what is the probability
that the system finds itself in a given metastable configuration? The system will relax
to thermal equilibrium over a time scale that is of the order of exp(E/D), whereE is a
characteristic energy barrier separating the metastable states. However, ifD � 1, this time
can be enormous. Our focus is on understanding the occupation over shorter time scales.

Our approach is based on the path-integral representation for the conditional probability
densityP(r, T |0, 0) that the system resides in stater at timeT given that it started at the
unstable stationary point at the origin. For purposes of illustration, we take the concrete,
physically important example presented in equation (1). The path-integral expression forP

is given by [11]

P =
∫
DrJ [r] e−S[r]/D (2)

where

S[r] = 1

4

∫ T

0
dt [ṙ +∇V (r)]2 (3)

and

J [r] = exp

(
1

2

∫ T

0
dt∇2V (r)

)
. (4)

HereS is the action,J is the Jacobian, andV is the potential for this problem and is given
by

V (r) = −α
2
x2− β

2
y2+ γ

2
x2y2+ δ

4
x4+ ε

4
y4. (5)

To evaluate the path integral for weak noise, a natural approximation scheme is the
method of steepest descent. In this approach, the path integral is dominated by the paths of
least action; a necessary condition is that these paths make the action stationary. The leading
approximation is to simply evaluate the action along these paths. However, in our case it is
necessary to go beyond this order and include both (Gaussian) fluctuations about the paths
of least action, as well as the Jacobian evaluated along the appropriate path. In other words,
once the stationary paths have been determined, we need to calculate three quantities: (i) the
action, (ii) the Jacobian, and (iii) the fluctuation determinant, which characterizes the effect
of fluctuations about the relevant path.

Having outlined a general prescription for calculating the conditional probability density,
we now focus on the specific example introduced above. Figure 1(a) is a three-dimensional
plot of V (r) for a certain choice of parameters. In figure 1(b) we plot the locus of points for
which ∇V = 0. This is a useful way to visualize state space; the points where the ellipses
intersect each other are the saddle points ofV (denoted by crosses), the points where the
ellipses intersect thex andy axes are the local minima (denoted by open circles), and the
origin is the unstable stationary point (denoted by a closed circle). The question of interest
here can now be phrased in the following way: given an ensemble of systems, each of
which starts at the unstable stationary point, what fraction of the ensemble flows into an
x-valley or y-valley (which lead to thex- and y-wells, respectively)? For simplicity, we
suppose thatδ and ε are sufficiently small that the local minima are so distant from the
region where state selection occurs that they have no influence. Operationally, this consists
of settingδ andε to zero, so that now

V (x, y) = −α
2
x2− β

2
y2+ γ

2
x2y2. (6)
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Figure 1. (a) V (x, y) with α = β = 2, γ = 4, δ = ε = 1/5. (b) Contours of zero force.

Given that the minima are now irrelevant, it is natural to consider the conditional probability
that if the system starts atr = 0 it ends up in anx-valley denoted by (X, 0) or ay-valley
denoted by (0, Y ). To do this we follow the procedure outlined above, viz we first find
the path, or paths, of least action that connect the unstable point to a point in one of these
valleys. (Hereafter, we shall confine our attention to calculating the probability that if the
system starts atr = (0, 0) at t = 0 that it end atrx = (X, 0) at t = T . The analogous
problem where the endpoint isry = (0, Y ) can be handled in exactly the same way.) The
most obvious stationary path isrc = (xc, 0), where

xc(t) = X sinh(αt)

sinh(αT )
. (7)

The actionSc ≡ S[xc] for this solution is given by

Sc = αX2

4
[coth(αT )− 1]. (8)

In the limit thatT →∞, S → 0, so that, at least in this limit, this solution is a path of least
action, not simply a stationary path. We are unable to prove that this is the only stationary
path that connects (0,0) with (X, 0). However, we will show that we can make significant
progress by considering only this path. In fact, this simplification will enable us to derive
a remarkably simple formula forP(rx, T |0, 0).



L74 Letter to the Editor

The second factor that we must evaluate is the Jacobian evaluated along the pathrc.
Using equations (4) and (7) we find that

J [rc] ≡ JxJy =
{

exp

[
− 1

2

∫ T

0
dtα

]}{
exp

[
1

2

∫ T

0
dt [−β + γ x2

c (t)]

]}
. (9)

It is straightforward to calculate bothJx andJy , with the results that

Jx = exp

(
−1

2
αT

)
(10)

and

Jy = exp

(
−βT

2
+ γX

2

4α

sinh(2αT )− 2αT

2 sinh2(αT )

)
. (11)

The third quantity that we must calculate is the effect of fluctuations aboutrc. To do
this, we expandS[r] about the pathrc, keeping terms of second order. Takingr = rc+δr,
we have that

S[r] = S[rc] + 1

2

∫
dtδrL[rc]δr

whereLc ≡ L[rc] is a 2× 2 matrix-differential operator that is given by

L[rc] ≡
[
Lx 0
0 Ly

]
(12)

where

Lx ≡ −∂2
t + α2 (13)

and

Ly ≡ −∂2
t + (−β + γ x2

c )
2− 2(αxc)(γ xc). (14)

The path integral in equation (2) overr now becomes an integral overδr. Using the
second-order expansion ofS[r], the Gaussian integrals overδr can be completed. These
integrals contribute a factor of

√| detLc|−1
to the expression for the conditional probability.

As L is block-diagonal, we have that detLc = detLx detLy . Combining this with the fact
that Jc = JxJy , the steepest-descent approximation for the conditional probability can be
written as

P(rx, T |0, 0) ∼ �−1P0 (15)

where

P0 ≡ Jx√| detLx |
e−Sc/D (16)

and

�−1 ≡ Jy√| detLy |
. (17)

The expressions forSc, Jx andJy are given in equations (8), (10) and (11), respectively.
The conditional probability,P , is the product of two factors:P0, which is described in
the following paragraph, and�−1. This form is particularly appealing because, as we shall
see below, it is� that accounts for the presence of the competingy-mode, whereasP0 is
independent of bothβ andγ and is therefore insensitive to the presence ofy. To determine
P0 and� we need to calculate detLx and detLy .
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The calculation of detLx is straightforward, with the result that detLx ∝ sinh(αT ).
Combining this result with equation (8) forSc and equation (10) forJx , P0 can be written
as

P0(X, T ) =
√
α[coth(αT )− 1] exp

[
−αX

2

4D
[coth(αT )− 1]

]
. (18)

P0 is the conditional probability density that a one-dimensional system under the influence
of the potential−αx2/2 and Gaussian white noise is located atx = X at t = T given that
it started atx = 0 at t = 0. As a function ofT , P0 is peaked at a valueT ∗ that is given
by coth(αT ∗) = 1+ 2D/(αX2), i.e.

T ∗ = (2α)−1 ln(1+ αX2/D). (19)

The calculation of detLy is not as straightforward; it can be expressed as [12]

detLy = h2(T )h1(0)− h1(T )h2(0)

ḣ2(0)h1(0)− ḣ1(0)h2(0)
(20)

where h1 and h2 are two linearly independent solutions of the homogeneous equation
Lyh = 0. The denominator of equation (20) is the Wronskian of the two solutions. To
evaluate equation (20), consider the quantity

h1(X, t) = exp

(
βt − γ

∫ t

0
dt ′xc(t ′)2

)
. (21)

Taking the second derivative ofh1 with respect tot we find that

ḧ1 = [(β − γ x2
c )

2− 2(ẋc)(γ xc)]h1. (22)

Comparing equation (22) withLyh = 0 from equation (14), we see that ifẋc = αxc then
h1 is one of the desired solutions. Noẇxc = αxc coth(αt), so as long as coth(αt) is
close to 1,h1 is a good solution. Recall, however, that forT < T ∗, P0 is essentially
zero (cf equation (18)). Thus, it is only values ofT > T ∗ that are relevant. However,
coth(αT ∗) = 1+O(D) so indeed we expect that as long asD � 1, h1 is a good approximate
solution to the homogenous equationLyh = 0. The second linearly independent solution,
h2, can be expressed in terms ofh1 as

h2(t) = h1(t)

∫ t

0
dt ′h−2

1 (t ′).

With this choice ofh2, we have thath2(0) = 0. In addition,h1(0) = 1 so that the Wronskian
is unity and

detLy = h2(T ) = h1(T )

∫ T

0
dth−2

1 (t). (23)

Combining this equation with the fact thatJy = h−1/2
1 (T ) (cf equations (11) and (21)), we

find that

�(X, T ) = h1(X, T )

√∫ T

0
dth−2

1 (X, t). (24)

With this expression for�, together with equation (21) forh1(t) and equation (18) forP0,
we have succeeded in deriving a formula forP(rx, T |0, 0) that accounts for the Jacobian
prefactor as well as the Gaussian fluctuations about the stationary pathrc. To calculate the
analogous formula forP(ry, T |0, 0) (wherery = (0, Y )), we simply switchα andβ and
replaceX with Y .
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At this stage we are in a position to calculate, using our expression forP(rx, T |0, 0),
the probability that the system flows into a given well. Currently, we have a simple analytic
expression forP0, but to calculate� we need to integrateh−2

1 over time. This integration
presents no difficulty in principle. However, by making two approximations we are able to
obtain a simple analytic formula for�. Specifically, we approximate the exponential factor

exp

[
γ x2

α

sinh(2αt)

2 sinh(αT )2

]
as 1+ exp

[
γ x2

α

sinh(2αT )+ 2α(t − T ) cosh(2αT )

2 sinh(αT )2

]
and omit the contribution from the lower limit (T = 0) in equation (23). This second
approximation is due to the fact that, as explained in the discussion following equation (22),
h1(t) is only a good solution forαt > 1. We now obtain the following approximate formula
for �(X, T ):

2β�2 = exp

[
−γX

2

α

sinh(2αT )− 2αT

2 sinh2(αT )

]
{exp(2βT )− 1} . (25)

We have compared equation (25) with numerical calculations of (24), and we find that
for the relevant range of parameters the results are essentially indistinguishable. Thus,
equation (18) forP0 and (25) for� together provide an analytic formula for the conditional
probability given in (15).

We now turn to the computation of the relative probability that the system flows into an
x- or y-valley. The strategy is to calculate the total probability flux through thex-valleys
and they-valleys and compare them. The probability current, which we denote byJ (r, T ),
is given byJ = −P∇V −D∇P , so that the total fluxFx through anx-valley atX is

Fx(X) =
∫ ∞

0
dt
∫ ∞
−∞

dyJx(r, t)

and the total fluxFy through ay-valley atY is

Fy(Y ) =
∫ ∞

0
dt
∫ ∞
−∞

dyJy(r, t)

whereJx andJy are thex- and y-components ofJ , respectively. Denoting byNx the
relative probability of flowing into anx-valley we then have that

Nx(X, Y ) = Fx(X)
Fx(X)+ Fy(Y ) . (26)

The calculation of the fluxes requires a knowledge ofJ and hence ofP(r, T |0, 0). In
particular, we require this function for an arbitrary point in thex-valley and not just on the
x-axis, i.e. we requireP(r), not simplyP(rx). The method we have presented may be
extended to obtain the full functional dependence onr [13], but the results given above do
not giveP any explicit dependence on they variable across thex-valley or thex variable
across they-valley. We will therefore limit ourselves here to showing that, by estimating
the flux by sampling it on the axis, we can obtain excellent agreement with Monte Carlo
simulations and therefore confirm the essential correctness of our approach. A feature of this
procedure is the necessity of fittingX or Y . We expect that this will no longer be required
when the flux is calculated, since this should enableFx(X) andFy(Y ) to be calculated for
largeX andY where we would expect them to be insensitive to their actual values. The
only restriction that we will impose onX andY is that they are not too small, for then state
selection will not have occurred when these points are reached. We estimate the minimum
value ofX to be of the order ofXmin, the point at which the force in they-direction changes
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Figure 2. Probability of flowing into anx-valley as a function ofα. Simulation results are for
β = 1 and the continuous curves are our theoretical results.

sign. ForV given in equation (5) we have thatXmin =
√
β/γ . Likewise, we have that the

minimum value ofy is given byYmin =
√
α/γ .

The Monte Carlo simulations are performed on the Langevin equation withV (x, y)

given in equation (6). In figure 2 the results are shown for a range of values ofα and
particular choices ofβ and of γD (γ andD always appear in this combination, since
the effect of the interaction is to renormalize the noise). The theory we have outlined
here is seen to be in excellent agreement with the simulations. ForγD = 0.1 we have
takenX = Xmin and Y = Ymin and for γD = 0.001 we have takenX = 1.83Xmin and
Y = 1.83Ymin. Comparison for other values of the parameters, a determination of the region
of validity of our approximation in parameter space and further improvements of the method
will also be discussed elsewhere [13].

In this letter we have presented a systematic method for determining state selection
from an unstable stationary state, when multiple metastable states compete for occupation.
Previous methods have not addressed this question directly. Our treatment has the added
advantage of yielding closed form, analytic expressions for the conditional probability
distribution. Finally, we emphasize that, although we have focused on a specific potential
system with two degrees of freedom for illustrative purposes, our theory is neither restricted
to potential problems nor to systems with only two degrees of freedom.

We thank Ken Elder for useful discussions, and the Universities of Chicago and Manchester
for hospitality. This work was supported in part by EPSRC grant GR/K79307 (AJM) and
by the NSF (DMR-9415604) (MBT).

References

[1] Kramers H A 1940Physica7 284
[2] Risken H 1989The Fokker–Planck Equation(Berlin: Springer) section 5.10



L78 Letter to the Editor

[3] Gardiner C W 1985Handbook of Stochastic Methods(Berlin: Springer) ch 9
[4] Suzuki M 1977J. Stat. Phys.16 11
[5] Caroli B, Caroli C and Roulet B 1981J. Stat. Phys.26 83
[6] Weiss U 1982Phys. Rev.A 25 2444
[7] Segel L 1962J. Fluid Mech.14 97

Newell A and Whitehead J 1969J. Fluid Mech.38 279
Graham R 1974Phys. Rev.A 10 1762

[8] Cross M C and Hohenberg P C 1993Rev. Mod. Phys.65 851
[9] Kramer L, Schober H R and Zimmermann W 1988PhysicaD 31 212

[10] Bagchi B and Fleming G R 1990J. Phys. Chem.94 9
[11] Graham R 1989Noise in Dynamical Systemsvol 1, ed F Moss and P V EMcClintock (Cambridge: Cambridge

University Press)
[12] McKane A J and Tarlie M B 1995J. Phys. A: Math. Gen.28 6931
[13] McKane A J and Tarlie M B, in preparation


